博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Norm(范数)
阅读量:5985 次
发布时间:2019-06-20

本文共 2301 字,大约阅读时间需要 7 分钟。

(from:wikipedia)

In ,  and related areas of, a norm is a  that assigns a strictly positivelength or size to all  in a , other than the  (which has zero length assigned to it). A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector).

A simple example is the 2-dimensional  R2 equipped with the . Elements in this vector space (e.g., (3, 7)) are usually drawn as arrows in a 2-dimensional starting at the origin (0, 0). The Euclidean norm assigns to each vector the length of its arrow. Because of this, the Euclidean norm is often known as the .

A vector space with a norm is called a . Similarly, a vector space with a seminorm is called a seminormed vector space.

Notation

The norm of a vector, , or  (its ) is usually noted using the "double vertical line", Unicode Ux2016 : ( ‖ ). For example, the norm of a vector v is usually denoted ‖v‖. Sometimes the vertical line, Unicode Ux007c ( | ), is used (e.g. |v|), but this latter notation is generally discouraged, because it is also used to denote the  of scalars and the  of matrices. The double vertical line should not be confused with the "parallel to" symbol, Unicode Ux2225 ( ∥ ). This is usually not a problem because ‖ is used in parenthesis-like fashion, whereas ∥ is used as an .

Definition

Given a  V over a  F of the , a norm on V is a  pV → R with the following properties:

For all a ∈ F and all uv ∈ V,

  1. p(av) = |ap(v), ( or positive scalability).
  2. p(u + v) ≤ p(u) + p(v) ( or ).
  3. If p(v) = 0 then v is the  (separates points).

A simple consequence of the first two axioms, positive homogeneity and the triangle inequality, is p(0) = 0 and thus

p(
v) ≥ 0 (
positivity).

seminorm is a norm with the 3rd property (separating points) removed.

Although every vector space is seminormed (e.g., with the trivial seminorm in the Examples section below), it may not be normed. Every vector space V with seminorm p(v) induces a normed space V/W, called the , where W is the subspace of V consisting of all vectors v in V with p(v) = 0. The induced norm on V/W is clearly well-defined and is given by:

p(
W + 
v) = 
p(
v).

A  is called normable (seminormable) if the of the space can be induced by a norm (seminorm).

转载于:https://www.cnblogs.com/kevinGaoblog/archive/2012/06/20/2556491.html

你可能感兴趣的文章
深入理解PHP内核(五)变量及数据类型-变量的结构和类型
查看>>
MyBatis学习总结(五)——实现关联表查询
查看>>
python __init__.py
查看>>
使用rollup构建你的JavaScript项目【一】
查看>>
面向对象的JavaScript之继承(二) 构造函数继承
查看>>
用code打造自己的过渡动画
查看>>
火掌柜iOS端基于CocoaPods的组件二进制化实践
查看>>
Jenkins集成Docker镜像实现自动发布
查看>>
Java MVC 1.0规范开始进入公开评审阶段
查看>>
(翻译) MongoDB(14) 在 Debian 上安装MongoDB社区版
查看>>
MAT(java 内存分析工具简单使用)
查看>>
Git如何检出指定目录或文件
查看>>
WeX5中input拍照上传图片方法分享,可单图与多图
查看>>
android servicemanager与binder源码分析二 ------ servicemanager服务提供者
查看>>
React Router中NamedComponent与Params使用
查看>>
href的那些事
查看>>
RecyclerView中Adapter和ViewHolder的封装
查看>>
xcache 源码包编译安装
查看>>
前端开发思考与实践
查看>>
tcp/ip参数控制
查看>>